一种模糊特征驱动曲线演化的图像分割
摘 要
利用模糊特征向量表示图像上各区域上的特性,然后把模糊特征向量集成到简化Mumford-Shah模型。这种推广的Mumford-Shah模型与原来的Mumford-Shah模型相比能包含更多的图像信息,增强了图像分割的性能,而复杂程度却没有提高。原来的模型是推广模型的特例。对弱边缘、凹凸区域和复杂背景的图像能较好地分割。人工合成图像、真实图像的实验说明推广模型对图像分割的有效性。
关键词
A Fuzzy Feature Driving Curve Evolution for Image Segmentation
SHI Chengxian1, WANG Hongyuan1, XIA Deshen2(1.Department of Information Science, Jiangsu Polytechnic University, Changzhou 213164;2.School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094) Abstract
Fuzzy feature vector has been used to represent the characteristics of image on different regions. The fuzzy feature vector has been integrated into Mumford-Shah model for the image segmentation. The generalized Mumford-Shah model has contained more information of image, enhanced capability of segmentation image and not increased complexity in comparison with original model. The original model is a particular case of the generalized model. The generalized model provides well segmentation to weak edges, concavo-convex region and complexity background image. Experimental results of applying the scheme to artificial and real images demonstrate its segmentation power.
Keywords
|