![]()
一种基于交叉熵的改进型PCNN图像自动分割新方法
摘 要
脉冲耦合神经网络(PCNN)是20世纪90年代形成和发展的一种新型神经网络。为了自动地进行精确的图像分割,在基于图像处理的前提下,对现有的PCNN模型进行了改进,即从原始图像与分割图像的目标之间、背景之间的差异性出发,提出了一种基于最小交叉熵准则的改进型PCNN图像分割新方法。通过计算机仿真,该方法能够自动确定循环迭代次数和自动选取最佳阈值,并与基于最大香农熵的PCNN分割方法进行了比较。实验结果表明,该方法优于香农熵准则PCNN分割,其不仅对图像分割精度高,而且具有较强的适用性。
关键词
PCNN 改进型 自动分割 交叉熵 20世纪90年代 脉冲耦合神经网络 图像分割 计算机仿真 图像处理 分割图像 原始图像 最佳阈值 自动选取 迭代次数 自动确定 分割方法 熵准则 差异性 香农熵 适用性 最小
Automated Image Segmentation Using Improved PCNN Model Based on Cross-entropy
() Abstract
Keywords
|