基于Contourlet能量标准差积的极化SAR图像融合
王贞俭(鲁东大学图书馆情报技术部,烟台 264025) 摘 要
针对Contourlet多尺度、多方向性的优点,以及单一特征量融合规则过于片面性的缺点,提出了一种结合Contourlet自适应阈值滤波的区域能量标准差积的多极化SAR图像融合算法。该方法利用Sigmoid函数构建一种自适应阈值函数来处理Contourlet的高频子带系数,实现融合前图像的去噪处理,然后在Contourlet域中完成不同极化SAR图像的信息融合。根据各子带系数的特性,对低频子带系数采用区域能量融合规则和加权算法;高频子带系数采用区域能量和标准差之积作为融合规则,进行选择性融合。通过对实测极化SAR图像融合的试验表明,该算法在目视效果和客观评价指标方面比其他算法,都具有一定的优越性。
关键词
A polarization SAR Image Fusion Algorithm Based on the Product of Local Energy and Regional Standard Deviation in Contourlet Domain
WANG Zhenjian(Ludong University Library Information Technology Department,Yantai 264025) Abstract
With the advantage of Contourlet and the disadvantage of single feature fusion rules, a multi-polarization SAR image fusion algorithm, based on product of local energy and regional standard deviation, is proposed. First, an adaptive threshold method is adopted to preprocess the images. Then, multi-polarization SAR image fusion is implemented in Contourlet domain. According to the characters of Contourlet coefficients, local energy fusion rules and weighted averaging method is adopted for low-frequency sub-band fusion rules. The Product of regional energy and local standard deviation as a fusion rule is adopted for high-frequency sub-bands. The result of real multi-polarization SAR images fusion show that this algorithm can provide satisfactory fusion performance.
Keywords
|