Current Issue Cover
基于RGB-D深度相机的室内场景重建

梅峰1,2, 刘京1,2, 李淳芃1, 王兆其1(1.移动计算与新型终端北京市重点实验室, 中国科学院计算技术研究所, 北京 100190;2.中国科学院大学, 北京 100049)

摘 要
目的 重建包含真实纹理的彩色场景3维模型是计算机视觉领域重要的研究课题之一,由于室内场景复杂、采样图像序列长且运动无规则,现有的3维重建算法存在重建尺度受限、局部细节重建效果差的等问题。方法 以RGBD-SLAM 算法为基础并提出了两方面的改进,一是将深度图中的平面信息加入帧间配准算法,提高了帧间配准算法的鲁棒性与精度;二是在截断符号距离函数(TSDF)体重建过程中,提出了一种指数权重函数,相比普通的权重函数能更好地减少相机深度畸变对重建的影响。结果 本文方法在相机姿态估计中带来了比RGBD-SLAM方法更好的结果,平均绝对路径误差减少1.3 cm,能取得到更好的重建效果。结论 本文方法有效地提高了相机姿态估计精度,可以应用于室内场景重建中。
关键词
Improved RGB-D camera based indoor scene reconstruction

Mei Feng1,2, Liu Jing1,2, Li Chunpeng1, Wang Zhaoqi1(1.Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract
Objective Three-dimensional reconstruction containing texture information is a classical issue in computer vision. Considering the complexity of an indoor scene and the length of sampling image sequence captured from a random moving RGB-D sensor, conventional three-dimensional reconstruction methods suffer from limited scale and perform poor local detail reconstruction effect. Method This paper proposes two improvements of the RGBD-SLAM-based three-dimensional reconstruction algorithm to obtain higher quality reconstruction effect. On the one hand, the plane-primitives are incorporated as constraints to enhance robustness and accuracy of the pair-wise registration algorithm. On the other hand, to reduce the influence of RGB-D sensor large distortion, a novel exponential weight function that is motivated by a Gaussian noise model is proposed. Result In the experiment, the proposed method yields higher quality results compared with state-of-the-art approaches on the benchmarks dataset of the computer vision group of Stanford. Our method also achieves lower average absolute trajectory error compared with a conventional RGB-D SLAM method. Conclusion Experimental results demonstrate that our method substantially increases the accuracy of camera pose estimation and quality of indoor scene three-dimensional reconstruction.
Keywords

订阅号|日报